A field-like property of finite rings
نویسندگان
چکیده
منابع مشابه
Rings with a setwise polynomial-like condition
Let $R$ be an infinite ring. Here we prove that if $0_R$ belongs to ${x_1x_2cdots x_n ;|; x_1,x_2,dots,x_nin X}$ for every infinite subset $X$ of $R$, then $R$ satisfies the polynomial identity $x^n=0$. Also we prove that if $0_R$ belongs to ${x_1x_2cdots x_n-x_{n+1} ;|; x_1,x_2,dots,x_n,x_{n+1}in X}$ for every infinite subset $X$ of $R$, then $x^n=x$ for all $xin R$.
متن کاملA Property of Ideals in Polynomial Rings
Every ideal in the polynomial ring in n variables over an infinite field has a reduction generated by n elements. Eisenbud and Evans [2] proved that every ideal in k[Xx,...,Xn] can be generated up to radical by n elements (where k is a field). Avinash Sathaye [7] and Mohan Kumar [5] proved a locally complete intersection in k[ Xv ..., Xn] can be generated by n elements. In this short note we sh...
متن کاملA Combinatorial Commutativity Property for Rings
Clearly, every commutative ring is a Qn-ring for arbitrary n; moreover, there exist badly noncommutative Qn-rings, since every ring with fewer than n elements is a Qnring. Our purpose is to identify conditions which force Qn-rings to be commutative or nearly commutative. It is obvious that every Qn-ring is a Pn-ring and every Pn-ring is a P∞-ring. We make no use of the results on Pn-rings in [1...
متن کاملOn Polynomial Rings with a Goldbach Property
David Hayes observed in 1965 that when R = Z, every element of R[T ] of degree n ≥ 1 is a sum of two irreducibles in R[T ] of degree n. We show that this result continues to hold for any Noetherian domain R with infinitely many maximal ideals. It appears that David Hayes [5] was the first to observe the following polynomial analogue of the celebrated Goldbach conjecture: If R = Z, then (?) ever...
متن کاملrings with a setwise polynomial-like condition
let $r$ be an infinite ring. here we prove that if $0_r$ belongs to ${x_1x_2cdots x_n ;|; x_1,x_2,dots,x_nin x}$ for every infinite subset $x$ of $r$, then $r$ satisfies the polynomial identity $x^n=0$. also we prove that if $0_r$ belongs to ${x_1x_2cdots x_n-x_{n+1} ;|; x_1,x_2,dots,x_n,x_{n+1}in x}$ for every infinite subset $x$ of $r$, then $x^n=x$ for all $xin r$.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Indagationes Mathematicae
سال: 1992
ISSN: 0019-3577
DOI: 10.1016/0019-3577(92)90024-f